FRACTIONNEMENT ISOTOPIQUE DU FER DANS LES MINÉRAUX ET DU MAGNÉSIUM ENTRE MINÉRAL ET SOLUTION

MARC BLANCHARD

- Theoretical isotopic fractionation
- > Fe isotope fractionation in minerals: DFT Mössbauer NRIXS
- Mg isotope fractionation between aqueous solution and carbonate minerals
- Isotopic signature of chemical impurities in minerals: Mg and sulfate in calcium carbonates

THEORETICAL ISOTOPIC FRACTIONATION

An essential basis for interpreting isotopic compositions in natural samples is to know the equilibrium isotopic fractionation factors

X isotope exchange between phase A and phase B:

 $AX + BX^* \iff AX^* + BX$

Mass-dependent equilibrium isotopic fractionation is <u>controlled by</u> <u>vibrational properties.</u> The reduced partition functions ratio or **B**-factor

X isotope exchange between phase A and an ideal gas of element X:

$$AX + X^* \iff AX^* + X \qquad \qquad \beta(A,X) = \frac{\left(n_{X^*}/n_X\right)_A}{\left(n_{X^*}/n_X\right)_{gas}}$$

 $10^{3} \ln \alpha(A,B,X) = 10^{3} \ln \beta(A,X) - 10^{3} \ln \beta(B,X)$

Mössbauer, Nuclear Resonant Ineastic X-ray Scaterring (NRIXS)

AB INITIO CALCULATIONS

First-principles calculations determine the electronic structure and the properties of well-defined systems without involving empirical parameters.

- Total energy of the system as a function of the geometry (atomic positions, cell parameters)
- Solution of the Schrödinger equation for a system of nuclei and electrons: density functional theory (DFT)
- The relaxed structure corresponds to the minimum of the total energy (accuracy w.r.t. exp. ≈ few %)
- Derivatives of the total energy w.r.t. the atomic positions and/or the electric field lead to the properties

DFT = Exact theory but its application requires approximations:

- Generalized Gradient Approximation (PBE)
- Plane-waves basis set (periodic system, cutoff)
- Calculation restricted to valence electrons (pseudo-potentials)
- Optionally, addition of a Coulomb repulsion between electrons at the same atomic orbitals = Hubbard U

Codes PWscf, CP and PHonon (Quantum-espresso package)

FE ISOTOPE FRACTIONATION IN MINERALS: DFT – MÖSSBAUER - NRIXS

⁵⁴Fe (5.84 %), ⁵⁶Fe (91.76 %), ⁵⁷Fe (2.12 %), ⁵⁸Fe (0.28 %)

\Rightarrow Proxy complementary to traditional stable isotopes

The most important Fe isotope fractionations occur in low-T environments and with redox gradients.

Planetary formation

Redox evolution of the ocean

Laterite, Brazil

Parameters controlling the Fe β -factor in minerals

Blanchard et al. (2009, GCA)

From 1st order thermodynamic perturbation theory:

In Nuclear Resonant Inelastic X-ray Scattering (NRIXS), the kinetic energy is related to the partial vibrational density of state (PDOS)

$$K_{57_{Fe}} = \frac{3}{2} \int_{0}^{e_{\max}} E(e,T)g(e)de$$

Einstein function

PDOS norm. to 1

Hematite (α -Fe₂O₃), rhombohedral sym., antiferromagnetic

Atomic positions

	x _{Fe}	x _o
Calc.	0.1449	-0.0558
Exp.	0.1447	-0.0556

Raman and IR frequencies

Siderite (FeCO₃), rhombohedral sym., antiferromagnetic

Pyrite (FeS₂), cubic sym., diamagnetic

Vibrational properties: theory vs. experiment

Phonon dispersion curves

Revision of Mössbauer-derived β -factor

Fe β -factor of pyrite confirmed by recent NRIXS measurements (Polyakov et al. 2013 Goldschmidt abstract) and experiments (Syverson et al. 2013 GCA)

Implications for sulfur isotope fractionation

MG ISOTOPE FRACTIONATION BETWEEN AQUEOUS SOLUTION AND CARBONATE MINERALS Solid-liquid reactions are ubiquitous and control many natural processes (like for instance isotopic fractionations)

Challenge:

Accurate calculation of isotopic properties of a solvated ion

£t

Modeling of both the solid and liquid phase at the same level of theory

Various theoretical approaches in litterature

> From a molecular dynamics (MD) simulation

> From a path integral molecular dynamics (PIMD) simulation

• Ideally P -> 1 gives classical mechanics and P -> ∞ quantum mechanic

= exact result for a given force field
(includes quantum and anharmonic effects)

 \rightarrow Systematic study of equilibrium fractionation factors in pure water and aqueous Mg, using several levels of theory within the simulations

Computational details

- PINT module of the CP2K suite of codes (open source molecular dynamics)
- The potential is approximated by an empirical function that is fitted to approximately reproduce known interactions.
- Up to 256 water molecules
- NVT ensemble / several T
- P = 32 beads
- At least 3×10^5 MD steps (time step = 0.5 fs)
- Up to 3000 snapshots

Reduced partition functions ratio $(\beta$ -factors)

Pinilla et al. (GCA 2014, 2015)

Mg isotopes in marine carbonates = potential paleoenvironnemental proxies.

Isotopic variability affected by: mineralogy, T, precipitation rate, Mg concentration, pH (for a review, see Saenger & Wang 2014)

Pinilla et al. (GCA 2015)

ISOTOPIC SIGNATURE OF CHEMICAL IMPURITIES IN MINERALS

Sulfate incorporation and ³⁴S/³²S isotopic fractionation in different calcium carbonates

The carbonate-associated sulfate is considered as an efficient proxy of the sulfur isotope composition of ancient oceans (Burdett et al. 1989, Kampschulte & Strauss 2004).

Experimental observations suggest that S is present as sulfate group in the carbonate structure.

What is the atomic-scale model for the replacement of the triangular molecule by a tetrahedral one? The isotopic fractionations associated?

→ First-principles investigation of S-calcite, S-aragonite, S-vaterite

Energetic of sulfate incorporation in carbonate minerals: Vaterite > calcite >> aragonite

Theoretical ${}^{34}S/{}^{32}S\beta$ -factors

Equilibrium S isotopic fractionation factors between the 3 carbonates are small (< 3‰ at 0 °C).

"The isotopic fractionation between calcite and aqueous sulfate is smaller than 4‰"

Effect of Al-substitution on the Fe B-factor of hematite

Evolution of lattice parameter (Stanjek & Schwertmann, 1992):

- Deviations from Vegard's rule

- Deviations correlated to synthesis temperatures and to the water content

=> Protons associated to Fe vacancies ?

Ternary diagram showing the compositions investigated: Construction of supercells with Al in Fe site and/or 3H in Fe site

Calculated (GGA + U) lattice parameters of hematite versus Al and water contents

Blanchard et al. (2010, GCA)

The iron β is higher for Fe atoms located next to the AI impurity. The effect is larger when AI is in the edge-sharing octahedron rather than in the corner-sharing or face-sharing octahedron.

β -factors of each Fe site in H-bearing hematite at 0°C (in ‰)

The amplitude of the local iron β -factors spans over 1.12 ‰ at 0°C, i.e. similar amplitude as in Al-substituted hematite, but compensation of the values due to complex structural relaxation.

Unlike Al, the protonation has no effect on the average iron β -factor.

Extreme values for Fe octahedra sharing an edge with the protonated vacancy.

Blanchard et al. (2010, GCA)

Oxygen β -factor of hematite vs Al or H content

• An incorporation of 18 mole % Al_2O_3 in hematite would increase the oxygen β of ~5.5‰ at 0°C. This effect is sufficiently large to be measurable and to affect the interpretation of natural isotopic compositions.

• The effect of H incorporation is found to be negligible. This is explained by a complex local relaxation of the defective structure leading to a compensation of local β values.

CONCLUSIONS

- Molecular modeling can contribute significantly to isotopic geochemistry. It is crucial to consider consistent theoretical β -factors in order to obtain reliable α -factors.
- Fe isotopes: DFT β -factors compares well with Mössbauer- or NRIXS-derived β -factors. Comparing the data obtained from the different techniques (DFT, Mössbauer, NRIXS) enables to obtain reliable equilibrium isotopic fractionation factors.
- Isotope fractionation is a local property that depends only on the environment surrounding the fractionated isotope.
- Solvation and dynamic effects are important in estimating α -factors of liquids
- Ab initio modeling allows to investigate the mechanisms involved at the molecular scale (crystallographic sites, surface effect, adsorption processes ...)

ACKNOWLEDGEMENTS

- ♦ IMPMC (Paris): E. Balan, M. Lazzeri, F. Mauri, C. Pinilla, H. Yi
- ♦ ENS (Paris): R. Vuilleumier
- ♦ GET (Toulouse): M. Méheut, F. Poitrasson
- ♦ UMET (Lille): M. Roskosz
- ♦ Univ. of Chicago: N. Dauphas

photo ; Alain Jeanne-Michaud **UPMC**, Paris

